Ethnic Polarization, Ethnic Salience, and Civil War
Ravi Bhavnani and Dan Miodownik
Journal of Conflict Resolution 2009; 53; 30 originally published online Nov 12, 2008;
DOI: 10.1177/0022002708325945

The online version of this article can be found at:
http://jcr.sagepub.com/cgi/content/abstract/53/1/30

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
Peace Science Society (International)

Additional services and information for Journal of Conflict Resolution can be found at:

Email Alerts: http://jcr.sagepub.com/cgi/alerts
Subscriptions: http://jcr.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
Citations http://jcr.sagepub.com/cgi/content/refs/53/1/30
Ethnic Polarization, Ethnic Salience, and Civil War

Ravi Bhavnani
Department of Political Science
Michigan State University, East Lansing

Dan Miodownik
Departments of Political Science and International Relations
Hebrew University of Jerusalem, Mount Scopus

This article examines how the relationship between ethnic polarization and civil war could be moderated by different degrees of ethnic salience. Using an agent-based computational model, we analyze the polarization–conflict relationship when ethnic salience is “fixed”—high for every member of two nominally rival ethnic groups—and “variable”—permitted to vary across individuals as a function of relative income. We find that (1) when salience is fixed, conflict onset is twice as high at low levels of polarization compared to when salience is permitted to vary, with the difference decreasing at high levels of polarization; (2) the relationship between conflict onset and the range over which we calculate variable salience is positive and robust for low and moderate levels of polarization; (3) the relationship between polarization and conflict onset is robust even under minority domination, if one holds salience fixed; and (4) holding ethnic salience fixed effectively amplifies the negative effect of polarization on economic performance.

Keywords: ethnicity; polarization; salience; civil war; agent-based model

How is the relationship between ethnic polarization and civil war moderated by different degrees of ethnic salience—the importance that individuals attach to ethnicity, one among several components of an identity repertoire? Measures of ethnic polarization—the probability that two randomly selected individuals will belong to different ethnic groups weighted by the relative size of each group—are commonly used to summarize the ethnic landscape of an entire country (Reynal-Querol 2002; Montalvo and Reynal-Querol 2005a, 2005b; Esteban and Ray 2008).

Authors’ Note: We gratefully acknowledge comments from Paul Abrahmson, Michael Bratton, Halvard Buhuag, Lars-Erik Cederman, Chanan Cohen, Kristian Gleditsch, Eric Little, Scott Page, and Ahmer Tarar. Support for this work was provided by the Department of Political Science and Center for the Advanced Study of International Development at Michigan State University, the Hebrew University Intramural Research Fund, and the Israeli Science Foundation. A detailed appendix is available from JCR online at http://jcr.sagepub.com/supplemental/. Executable model code for replication will be posted at the same location on August 1, 2009.
The use of this summary statistic effectively assumes that ethnic salience is constant across individuals—that the depth of ethnic cleavages displays no spatial or temporal variation, independent of changes in the relative size of ethnic groups (Bossuoy 2006; Norris and Mattes 2003; Posner 2004b). Yet, empirical evidence would suggest otherwise.

A key question from rounds 1 and 2 of the Afrobarometer Survey—to our knowledge, the only individual-level, multicountry, multi-round survey of its kind in the African context—gauges the relative salience that respondents attach to different group identities, one of which is ethnicity:

We have spoken to many [citizens of country name] and they have all described themselves in different ways. Some people describe themselves in terms of their language, ethnic group, religion, or gender, and others describe themselves in economic terms, such as working class, middle class, or a farmer. Besides being [nationality], which specific group do you feel you belong to first and foremost?

Table 1 summarizes data from 25,544 respondents sampled across eight countries for this question and compares these data to each country’s polarization and PREG (Politically Relevant Ethnic Group) scores. The survey data indicate that (1) there is considerable within-country variation in the share of respondents whose “first and foremost” identification lies with their ethnic group; (2) in addition to within-country variance, there is also considerable cross-country variation in the share of respondents whose “first and foremost” identification lies with their ethnic group, which ranges in round 1 from a high of 48 percent in Nigeria to lows of 13 percent and 12 percent in Uganda and Zambia, respectively; (3) in comparing responses across rounds, the proportion of individuals who identify primarily with their ethnic group remains relatively stable in cases such as Mali, Nigeria, and Zambia, whereas other cases display dramatic changes in ethnic salience, dropping in Zimbabwe from 47 percent to 13 percent and in Malawi from 37 percent to 20 percent; and (4) a significant gap exists between measures of ethnic salience, on the one hand, and measures of ethnic polarization and politically relevant ethnic groups on the other hand.

Looking more specifically at the case of Nigeria, we disaggregate the 48 percent of respondents from round 1 who identified primarily with their ethnic group from the national to the state level. In the state of Akwa Ibom, located in southern Nigeria and composed of six distinct but nonetheless related ethnolinguistic groups (the Ibibio, Annang, Oron, Ibeno, Eket, and Efik), 93.6 percent of respondents identified primarily with their ethnic group. In Abia, another state in southern Nigeria inhabited by the Igbo, 86.3 percent of respondents identified primarily with their ethnic group. Clearly, the high level of salience attached to ethnicity in these states, as well as in the adjacent states of Bayelsa, Rivers, and Delta, is partly because of their location in the contentious Niger Delta Region and the ongoing
dispute over oil production and revenue. In marked contrast, a mere 16.3 percent of respondents in Katsina and 18.4 percent of respondents in Kano, northern states inhabited predominantly by the Hausa and Fulani, identified primarily with their ethnic group.

Like Nigeria, South Africa also displays within-country variation in ethnic salience: disaggregated along provincial lines, the percentage of round 1 respondents who identified primarily with their ethnic group varied from a low of 5.1 percent in the Northern Province (Limpopo), 7 percent in the Northern Cape, and 7.5 percent in the Western Cape (regions with the highest percentages of respondents identifying primarily with race) to a high of 30 percent in the Eastern Cape and 41.3 percent in Kwa-Zulu Natal. Unsurprisingly, the Cape was created in the postapartheid era out of two “independent” homelands for the Xhosa, whereas Kwa-Zulu Natal combined the pre-1994 province of Natal and various parts of KwaZulu Bantustan, home to the Zulu monarch. In South Africa, considerable cross-country variation in the aggregate share of respondents whose “first and foremost” identification lies with their ethnic group also exists across survey rounds, from 42 percent to 22 percent in rounds 1 and 2, respectively.

Taken together, the data support our claim that single summary statistics, such as ethnic polarization, fail to effectively capture the heterogeneity of ethnic country-landscapes, papering over spatial and temporal variation in ethnic salience at the individual level. Could the impact of ethnic polarization on the incidence of conflict then

<table>
<thead>
<tr>
<th>Country</th>
<th>RQ Index</th>
<th>PREG</th>
<th>Round 1 (N)</th>
<th>Round 2 (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>0.72</td>
<td>0.49</td>
<td>0.42 (2,200)</td>
<td>0.22 (1,200)</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>0.70</td>
<td>0.41</td>
<td>0.47 (1,200)</td>
<td>0.13 (1,200)</td>
</tr>
<tr>
<td>Malawi</td>
<td>0.74</td>
<td>0.55</td>
<td>0.37 (1,208)</td>
<td>0.20 (1,200)</td>
</tr>
<tr>
<td>Zambia</td>
<td>0.61</td>
<td>0.71</td>
<td>0.12 (1,198)</td>
<td>0.11 (1,201)</td>
</tr>
<tr>
<td>Mali</td>
<td>0.42</td>
<td>0.13</td>
<td>0.40 (2,089)</td>
<td>0.37 (1,200)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.40</td>
<td>0.66</td>
<td>0.48 (3,603)</td>
<td>0.47 (1,200)</td>
</tr>
<tr>
<td>Uganda</td>
<td>0.28</td>
<td>0.63</td>
<td>0.13 (2,271)</td>
<td>0.19 (1,200)</td>
</tr>
<tr>
<td>Tanzania</td>
<td>0.27</td>
<td>0.59</td>
<td>0.03 (2,198)</td>
<td>0.18 (1,200)</td>
</tr>
</tbody>
</table>

Source: Measures of ethnic salience obtained from Afrobarometer Surveys Round 1 (1999–2001) and Round 2 (2002–2004); Reynal-Querol (RQ) scores obtained from Montalvo and Reynal-Querol 2005a; politically relevant ethnic group (PREG) scores obtained from Posner 2004a. Note: N denotes the total number of respondents per country. Namibia was omitted from the analysis because of missing RQ values. Lesotho was omitted because of small sample size, whereas the question of interest was not asked in Ghana. Round 3 data were not included for the same reason. Botswana was dropped because of the absence of meaningful ethnic cleavages.
be more nuanced than posited by recent scholarship if one relaxes the assumption that ethnic salience is fixed or invariant? In addressing this question, the ensuing theoretical analysis suggests that when permitted to vary, ethnic salience effectively moderates the relationship between ethnic polarization and civil war; that in comparison, levels of conflict onset are more than twice as high at low levels of polarization when salience is fixed; that the relationship between polarization and conflict onset is robust even under minority domination, if and only if one holds ethnic salience fixed; and that economic policies may succeed or fail regardless of the level of ethnic polarization, their failure responsible for conflict over revenue sharing, notwithstanding our finding that the assumption that fixed ethnic salience effectively amplifies the negative effect of polarization on economic performance.6 These findings have a relatively straightforward but nonetheless important implication: if the importance individuals attach to their ethnic identities is a key determinant of conflict, then shifts in ethnic salience should assume center stage in explanations that link ethnicity to conflict.

Polarization and Conflict

Few scholars would venture so far as to argue that ethnicity is not an important factor in civil conflict. Yet, contrary to expectations, the bulk of the quantitatively oriented literature fails to establish a clear association between ethnicity and civil war, even in wars that are commonly identified as “ethnic” wars. Using the Ethno-Linguistic Fractionalization (ELF) Index, an aggregate measure of ethnic heterogeneity, these studies make one of the following arguments: (1) ethnic heterogeneity decreases the likelihood of civil war as coordination for rebellion becomes harder in more diverse societies (Collier and Hoeffler 2000); (2) ethnic heterogeneity increases the likelihood of internal armed conflict, and to a lesser degree, of civil war (Sambanis 2004; Hegre and Sambanis 2006); (3) ethnic heterogeneity increases the likelihood of civil war, yet the effect is indirect (Blimes 2006); (4) consistent with Horowitz (1985), ethnic heterogeneity has a nonmonotonic association with the outbreak of civil war (Elbadawi and Sambanis 2002)—low when the population is ethnically homogeneous and extremely diverse and high when the population is divided into a few prominent ethnic groups; or (5) ethnic heterogeneity has no significant relationship with the outbreak of civil war (Fearon and Laitin 2003; Fearon, Kasara, and Laitin 2007).7

Given the rather ironic “diversity” of these findings, a wave of recent scholarship on the link between ethnicity and civil war specifies more robust indexes, most centering on measures of ethnic polarization. Montalvo and Reynal-Querol (2005a), for instance, attribute the absence of a statistically significant relationship between ethnic heterogeneity and the incidence of civil war specifically to the use of a fractionalization index. As an alternative, they specify the Reynal-Querol (RQ) index of polarization, and they find that the relationship between polarization and civil war is now
robust. They also find that an increase in polarization has a negative but indirect effect on economic growth by increasing the incidence of conflict and consumption and lowering investment (Montalvo and Reynal-Querol 2005b).8

Building on this scholarship, Esteban and Ray (2008) find that measures of fractionalization and polarization tend to run in opposite directions: that conflict occurrence in polarized societies will be low whereas its intensity will be high, with the relationship reversed for highly fractionalized societies. As such, Esteban and Ray suggest that the relationship between fractionalization and conflict is nonmonotonic and that a mirror-image inverted pattern defines the relationship between polarization and conflict.

Others explore variants of the polarization–conflict link: Østby (2008) examines whether various forms of polarization and horizontal inequalities affect the probability of civil-conflict onset across thirty-six developing countries; Torenhvlied and Haarhuis (2008) analyze the link between polarization and policy reform; Hegre (2008) applies Esteban and Ray’s (1994) concept of polarization to two international distributions (world income distribution and the distribution of political systems) and investigates whether high levels of polarization are reflected in high conflict levels, and Forsberg (2008) analyzes the link between ethnic polarization and conflict in a widened strategic environment, encapsulating each state that experiences ethnic conflict and its neighboring state or states.9

Each of these studies significantly advances our understanding of the relationship between ethnic polarization, on one hand, and conflict on the other hand. Yet all either implicitly or explicitly assume that the distribution of individuals across ethnic groups determines the salience of ethnicity, or the weight that individuals place on “ethnicity” as a defining or core identity.10 One consequence of this assumption is that absent a change in relative group sizes, ethnic salience remains constant across groups, and more notably, across individuals within ethnic groups. Thus, as the static (or exogenous) ELF index measuring ethnolinguistic diversity is replaced by an index measuring the cultural (or linguistic) difference between groups (Fearon 2003), by the PREG index measuring politically relevant ethnic groups (Posner 2004a), the RQ-index of polarization to capture the intensity of potential conflict (Reynal-Querol 2002; Montalvo and Reynal-Querol 2005a), and an endogenously specified or dynamic fractionalization index (Campos and Kuzeyev 2007), key constructivist insights that suggest that the salience individuals attach to ethnicity—one of multiple identities individuals may possess—varies as a function of incentives or strategic manipulation (Chandra 2001, 2006) appear to have been buried if not altogether discarded.11

Our Approach

Multivariate statistical models exploring the significance of key predictor variables on the incidence of civil war have established numerous empirical regularities, although these studies are constrained by the use of different data sets, variation in the operationalization and measurement of key variables (Hegre and
Sambanis 2006; Ross 2006), and a limited ability to specify underlying causal mechanisms (Humphreys 2005) given (1) the large number of relevant causal factors, (2) complicated interactions between agents and associated factors, (3) the difficulty of collecting useful data on agent characteristics and behavior, and (4) a small set of “natural experiments” to test the effects of varying factors. Moreover, the very characteristics of complex adaptive systems—agent heterogeneity and adaptation, nonlinear mechanisms and feedback loops, nonrandom interaction topologies, and path-dependent dynamics—violate many of the assumptions underpinning the use of traditional large-\(N\) approaches. In the absence of adequate tools to deal with complex behavior, researchers are inclined to ignore these complexities, unnaturally limiting the scope of social research (Meyer, Gaba, and Colwell 2005).

In contrast to multivariate approaches, we view the onset of civil war as influenced by a set of processes that interconnect political, economic, and social factors—a prime example of a complex adaptive system, in which many decision-making agents, each with their own characteristics and behaviors, interact with and change both the physical environment and other agents, leading to nonlinear and path-dependent dynamics. Agent-based models, or ABMs (Bankes 2002; Bonabeau 2002; Conte, Hegselmann, and Terna 1997), are well suited to meeting the challenge of modeling a complex adaptive system because they are formal, unambiguous, replicable, and testable (Axelrod 1997; Axelrod and Cohen 2001)—lending themselves to the study of aspects of complex systems that are difficult to study using traditional analytic techniques (Parunak, Savit, and Riolo 1998). ABMs therefore provide powerful ways to develop, evaluate, and test theories by undertaking complex experiments that would be difficult to conduct in the real world.\(^{12}\)

Given the limited availability of individual-level data on ethnic salience, as well as the gap between this data and aggregate national-level data on the incidence of civil war, we use an ABM to analyze how the effect of ethnic polarization on the incidence of civil war could be moderated by different degrees of ethnic salience at the individual level. In particular, we experiment with low and high levels of polarization, holding ethnic salience fixed at its maximum value. We then permit ethnic salience to vary across individuals as a function of relative group income, building on work that emphasizes the materialist and instrumentalist basis of ethnicity (Bates 1974).\(^{13}\) Next, we test the robustness of our results by analyzing intermediate levels of ethnic polarization, different ranges used to calculate relative income and determine ethnic salience, and the effect of minority domination. And finally, we analyze the effect of economic policy on conflict for different levels of ethnic polarization and different measures of ethnic salience.

The Computational Model

Our agent-based computational model is intrinsically a game between leaders of two nominally rival ethnic groups, one of which holds power and consequently
serves as a target for takeover by the rival leadership. In contrast to a standard optimization problem in which a leader would maximize an objective function subject to constraints, we impose parameter values to define a leader’s strategy set. We model, in other words, boundedly rational agents in a purposive effort to illustrate how suboptimal spending and investment affect levels of conflict under different ethnic landscapes and a variety of natural-resource regimes.

Conceptually, and at a higher level of abstraction, our model works as follows: At each timestep, rival leaders make spending and investment decisions; these decisions in turn generate revenue, affect territorial control and peasant support, and determine the emergence or progression of conflict that occurs when leaders seek to control the same cell or cells. Conflict, in turn, leads to new patterns of control over time. We consequently underscore the notion that patterns of spending and investment directly influence the instigation and spread of civil unrest by altering peasant support and the leadership’s capacity to control territory—and by implication, its ability to wage conflict.

Our computational model is best conceived of as an exploratory device, one that may be used to understand key causal drivers and mechanisms underpinning the incidence of civil war in artificial landscapes or specific real-world cases by permitting the user to select different degrees of ethnic salience, different patterns of ethnic polarization and domination, and a variety of resource profiles and agent strategies. As such, users may conduct complicated thought experiments for which empirical data would, in most cases, be difficult if not impossible to collect. For example, those interested in the behavior of key agents could explore how a ruler’s ability to generate revenue through the taxation or looting of natural resources affects the onset and duration of civil war; those interested in understanding the micro-foundations of recruitment could focus on the conditions under which the opportunity cost faced by peasants for joining a rebellion increase or decrease; and those interested in studying the effects of ethnicity on the incidence of civil war, as we are in this article, could formally study the consequences of different degrees of ethnic salience or different patterns of ethnic domination.

Figure 1 presents a summary of key model components, mechanisms, and feedback loops, explained formally in the appendix (Web-based) to this article. To begin with, we define a landscape (component 1 in Figure 1) as a discrete cellular grid with fixed borders and a capital city (C) located in the center. Each cell on the landscape may contain peasants from two rival ethnic groups (component 2)—the ethnic group in power (EGIP) and the ethnic group out of power (EGOP). The landscape is characterized by production, which falls into one of four economic sectors (component 3). Economic policy, defined by the sectoral and spatial spending decisions (component 4) taken by leaders of each ethnic group, determines the amount of revenue (component 5) available to garner peasant support (component 6). Where such support is weak, peasants may relocate or migrate (component 7).
to cells populated and controlled by members of their own ethnic group. Revenue is also used by leaders to control territory (component 8), and we underscore the importance of territorial control in this framework, given that control is a necessary condition for spending, investment, revenue generation, and popular support. All control is cell-specific, as is the breakdown of economic sectors, spending decisions, and peasant support. Conflict (component 9), also cell-specific, emerges when group leaders seek to control the same territory or cell.

Specific mechanisms linking revenue to conflict (a–d in Figure 1) include the following: (a) robbery leads to a decline in economic growth, undermining peasant support and weakening the state, making it more vulnerable to capture over time; (b) spending on social welfare increases popular support but remains economically unviable in the long term; (c) spending on coercive power alters peasant support and is essential for territorial control; and (d) investment in the economy, what we refer to as benevolent rule, increases the flow of revenue over time with a positive effect on peasant support. Key feedback loops (i–n) include the following: (i) changes in revenue (relative to the revenue of nominal rivals) increase (or decrease) the salience of ethnicity; (j) ethnic salience affects peasant support; (k) high levels of peasant support decrease the cost of control, and control has a nonmonotonic effect on support (excessive control lowers support, as does weak or insecure control); (l) when support for the leader in control of a cell is weak,
peasants may exercise the option to migrate to ethnic enclaves in an effort to find safety in numbers; \((m)\) migration changes the calculus of control and thus affects spending, investment, and support for leaders;\(^{14}\) and \((n)\) conflict, which arises when leaders seek to control the same territory, alters the control of individual cells and may ultimately alter control of the state.

Table 2 summarizes key model parameters and value ranges. As such, leaders of rival ethnic groups \((A\) and \(B)\) may adopt one of four stylized economic policies: benevolent rule, robbery, social welfare, and territorial control; the resource base may vary from agriculture to one based on harder-to-extract kimberlite or artisanally extracted alluvial diamonds; peasants may belong to one of two nominally rival ethnic groups; ethnic salience may then be fixed or may vary across individuals based on grievances that result from disparities in income; income disparities may, in turn, be calculated over different per capita ranges, beginning locally with an agent’s own cell and increasing to cover the entire landscape; and finally, one may seed the model to capture different patterns of ethnic polarization and ethnic domination.

We use the model to determine whether the relationship between ethnic polarization and civil war is moderated by different degrees of ethnic salience—the importance that individuals attach to ethnicity as one among a number of identities. Levels of ethnic polarization, measured with the RQ index, are specified by varying the relative size of rival ethnic groups (see Table 3). Ethnic salience, in turn, is initially “fixed,” following the primordial notion that ethnicity is always salient for all individuals. We then relax this assumption, permitting ethnic salience to vary across individuals as a function of relative income, such that the greater the disparity between a peasant’s per capita income and the income of nominal rivals, the greater the salience she attaches to her ethnicity.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic policy</td>
<td>(\hat{A}, \hat{B}) Benevolent rule, Robbery, Social welfare, Territorial control</td>
</tr>
<tr>
<td>Resource base</td>
<td>Agriculture, Kimberlite, Alluvial industrial, Alluvial artisanal</td>
</tr>
<tr>
<td>Resource location</td>
<td>Diffuse, Point source</td>
</tr>
<tr>
<td>Ethnic group</td>
<td>A, B</td>
</tr>
<tr>
<td>Ethnic salience</td>
<td>Fixed, Variable</td>
</tr>
<tr>
<td>Per capita range</td>
<td>Single cell, Entire landscape</td>
</tr>
<tr>
<td>Ethnic polarization</td>
<td>High, Low</td>
</tr>
<tr>
<td>Ethnic dominance</td>
<td>Majority rule, Contest power, Minority rule</td>
</tr>
</tbody>
</table>

Note: Per capita range and polarization are both specified as continuous variables.
Experiments and Analysis

We run four experiments using the computational framework described above. Our first experiment (A) tests the causal link between different levels of ethnic polarization, ethnic salience, and the incidence of civil war. Specifically, we examine how fixed (always salient) and variable (as a function of relative income) levels of ethnic salience moderate the influence of polarization on conflict, examining extreme cases in which the peasant population is evenly divided into two groups ($n_A = 0.85$, $n_B = 0.15$) or into a dominant ethnic majority and a dominated ethnic minority ($n_A = 0.85$, $n_B = 0.15$, $RQ = 1$), as well as intermediate levels of polarization ($RQ = 0.75$, 0.89, 0.99). We record the incidence of civil war along the following dimensions: conflict onset—measured as the percentage of cells on the landscape that experience at least one conflict; the number of conflict episodes—each episode defined by a lag of ten timesteps in which no conflict occurs in a cell; and conflict duration—measured in conflict zones with a length and width of z (equal to 1 in the current analysis) grid cells. In subsequent experiments (B and C), we test the sensitivity of our results to variation in the “per capita range” over which ethnic salience is computed and to a change in the structure of power relations between ethnic groups by analyzing the effect of minority domination (e.g., for $RQ = 0.89$, $n_A = 0.35$ and $n_B = 0.65$). And in a final experiment (D), we examine the effect of economic policy on conflict by varying the strategy of the EGIP’s leader from the default strategy robbery to benevolent rule, again under different levels of ethnic polarization and different measures of ethnic salience. Note that in all the experiments we analyze, default or baseline values for additional model parameters (except when varied as part of the experiment) are as follows: the majority ethnic group A holds power; leaders of group A (B) play the robbery (benevolent) strategy; the resource base is alluvial; and all calculations of relative income are made locally in the peasant’s current cell (the per capita range is 0). Our results are based on averages taken from thirty model runs with unique random seeds.

Table 3

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Relative Size of Rival Ethnic Groups</th>
<th>$RQ = 4 \sum_{i=1}^{N} \pi_i^2(1 - \pi_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>$n_A = 0.85$, $n_B = 0.15$</td>
<td>0.51</td>
</tr>
<tr>
<td>Moderate</td>
<td>$n_A = 0.75$, $n_B = 0.25$</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>$n_A = 0.65$, $n_B = 0.35$</td>
<td>0.89</td>
</tr>
<tr>
<td>High</td>
<td>$n_A = 0.55$, $n_B = 0.45$</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>$n_A = 0.50$, $n_B = 0.50$</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Bhavnani, Miodownik / Ethnic Polarization, Ethnic Salience, and Civil War 39

Downloaded from http://jcr.sagepub.com at The Hebrew University Library Authority on January 9, 2009
Analysis

Experiment A: Ethnic polarization and ethnic salience. Results from experiment A, reported in Table 4, indicate that conflict onset is higher when ethnic salience is fixed (compared to when it is permitted to vary across individuals), as is the case with the number of conflict episodes. In particular, we find that conflict onset is 2.7 times higher under fixed relative to variable ethnic salience at the lowest level of ethnic polarization, with the difference in onset under constant and variable salience decreasing to a factor 1.6 when polarization is at its maximal level. Specifically, when $RQ = 0.51$, 14 percent of the landscape experiences at least one conflict when salience is fixed, whereas only 5 percent of the landscape experiences any conflict when salience is permitted to vary endogenously. And when $RQ = 1.00$, 35 percent of the landscape experiences conflict under fixed salience, whereas 21 percent experiences conflict under variable ethnic salience.

In contrast, the difference in the number of conflict episodes under fixed and variable ethnic salience remains stable at both low and high levels of polarization (by a factor of approximately 1.4), whereas conflict duration is greater under variable ethnic salience when polarization is low and only marginally higher under fixed ethnic salience when polarization is high. One explanation for the inverted result with conflict duration is that aggregate revenue is higher under variable ethnic salience (see Experiment D below), effectively allowing a greater share of resources to be devoted to coercive power, thereby prolonging conflict.

The trend in conflict onset at intermediate levels of polarization is generally consistent with what we observe at the extremes, as is the trend in conflict episodes and conflict duration. One exception occurs when the two groups are just shy of

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Ethnic Salience</th>
<th>Onset (SD)</th>
<th>Episodes (SD)</th>
<th>Duration (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RQ = 0.51$</td>
<td>Fixed</td>
<td>0.14 (0.01)</td>
<td>166.97 (23.56)</td>
<td>7.48 (1.10)</td>
</tr>
<tr>
<td>$RQ = 0.51$</td>
<td>Variable</td>
<td>0.05 (0.01)</td>
<td>112.03 (19.33)</td>
<td>10.16 (1.10)</td>
</tr>
<tr>
<td>$RQ = 0.75$</td>
<td>Fixed</td>
<td>0.23 (0.02)</td>
<td>195.50 (35.29)</td>
<td>6.93 (1.08)</td>
</tr>
<tr>
<td>$RQ = 0.75$</td>
<td>Variable</td>
<td>0.11 (0.02)</td>
<td>130.40 (18.99)</td>
<td>9.54 (1.19)</td>
</tr>
<tr>
<td>$RQ = 0.89$</td>
<td>Fixed</td>
<td>0.29 (0.02)</td>
<td>435.13 (36.57)</td>
<td>11.84 (0.91)</td>
</tr>
<tr>
<td>$RQ = 0.89$</td>
<td>Variable</td>
<td>0.16 (0.02)</td>
<td>358.00 (36.21)</td>
<td>15.02 (2.58)</td>
</tr>
<tr>
<td>$RQ = 0.99$</td>
<td>Fixed</td>
<td>0.31 (0.03)</td>
<td>461.33 (65.35)</td>
<td>13.60 (1.96)</td>
</tr>
<tr>
<td>$RQ = 0.99$</td>
<td>Variable</td>
<td>0.22 (0.02)</td>
<td>521.87 (60.47)</td>
<td>11.59 (2.56)</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Fixed</td>
<td>0.35 (0.05)</td>
<td>610.47 (134.09)</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Variable</td>
<td>0.21 (0.02)</td>
<td>433.20 (59.83)</td>
<td>16.67 (2.43)</td>
</tr>
</tbody>
</table>

Note: $RQ =$ Reynal-Querol index.
being equally sized. When $RQ = 0.99$, conflict onset reaches a peak of 22 percent under variable ethnic salience, only marginally exceeding the level of conflict (21 percent) under maximal polarization when $RQ = 1.00$. We observe a similar pattern in the number of conflict episodes that peak when $RQ = 0.99$ and remain higher under variable ethnic salience from this point onward. And finally, we note that conflict duration is greater under fixed ethnic salience once $RQ \geq 0.99$.

Experiment B: Ethnic polarization, ethnic salience, and per capita range.

Experiment B tests how variation in the “per-capita range” over which variable ethnic salience is computed affects the incidence of conflict for different levels of ethnic polarization. Table 5 summarizes these results. When we increase the per-capita range—the spatial distance or radius used to make per-capita income comparisons between members of rival groups—from 0 (the single cell in which the peasant is located and the default value used in the experiments above) to 2, 5 (intermediate levels), and then 10 (the entire landscape), conflict onset consistently increases insofar as group A remains a clear majority. As members of the minority group compare their economic well-being with that of majority group members located in ever more distant parts of the landscape, ethnic salience and conflict increase. As the disparity in size between the minority and majority group narrows ($RQ = 0.99$), however, the relationship between per-capita range and conflict onset

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Ethnic Salience</th>
<th>Per Capita Range</th>
<th>Conflict</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RQ = 0.51$</td>
<td>Variable</td>
<td>2</td>
<td>Onset (SD): 0.08 (0.01)</td>
</tr>
<tr>
<td>$RQ = 0.51$</td>
<td>Variable</td>
<td>5</td>
<td>Onset (SD): 0.09 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.51$</td>
<td>Variable</td>
<td>10</td>
<td>Onset (SD): 0.09 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.75$</td>
<td>Variable</td>
<td>2</td>
<td>Onset (SD): 0.18 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.75$</td>
<td>Variable</td>
<td>5</td>
<td>Onset (SD): 0.20 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.75$</td>
<td>Variable</td>
<td>10</td>
<td>Onset (SD): 0.20 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.89$</td>
<td>Variable</td>
<td>2</td>
<td>Onset (SD): 0.17 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.89$</td>
<td>Variable</td>
<td>5</td>
<td>Onset (SD): 0.23 (0.02)</td>
</tr>
<tr>
<td>$RQ = 0.89$</td>
<td>Variable</td>
<td>10</td>
<td>Onset (SD): 0.24 (0.01)</td>
</tr>
<tr>
<td>$RQ = 0.99$</td>
<td>Variable</td>
<td>2</td>
<td>Onset (SD): 0.22 (0.01)</td>
</tr>
<tr>
<td>$RQ = 0.99$</td>
<td>Variable</td>
<td>5</td>
<td>Onset (SD): 0.20 (0.01)</td>
</tr>
<tr>
<td>$RQ = 0.99$</td>
<td>Variable</td>
<td>10</td>
<td>Onset (SD): 0.17 (0.02)</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Variable</td>
<td>2</td>
<td>Onset (SD): 0.20 (0.02)</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Variable</td>
<td>5</td>
<td>Onset (SD): 0.25 (0.02)</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Variable</td>
<td>10</td>
<td>Onset (SD): 0.22 (0.00)</td>
</tr>
</tbody>
</table>

Note: $RQ =$ Reynal-Querol index.
changes direction. And once the two groups are equally sized ($RQ = 1.00$), the relationship becomes less clear cut as the disparity between a peasant’s local environment and the global environment (or entire landscape) increases significantly.

Experiment C: Ethnic polarization, ethnic salience, and minority domination. In a recent article, Cederman and Girardin (2007) voice a concern that studies of ethnic and other civil wars pay scant attention to the effects of minority domination.¹⁶ Wimmer, Cederman, and Min (2007) also provide empirical support for the proposition that the exclusion of a large ethnic group from power, rather than ethnic diversity, better explains the outbreak of civil war. In sharp contrast to these studies, Fearon, Kasara, and Laitin (2007) find weak and region-specific empirical support for the argument that the exclusion of large groups from power increases the likelihood of civil conflict. We make a modest, albeit theoretical, contribution to this debate by running experiment C, in which we examine the sensitivity of our results to minority domination at different levels of polarization under fixed and variable measures of ethnic salience.

The results, reported in Table 6, indicate that minority domination does influence the incidence of conflict and that the effect is sensitive to the specification of ethnic salience. When ethnic salience is fixed, conflict onset increases with the level of polarization or size of the minority in power, peaking when the groups are close but not yet equal in size ($RQ = 0.99$). In marked contrast, when ethnic salience is permitted to vary, conflict onset decreases as the level of polarization rises, or as the size of the minority approaches that of the majority group. These findings imply that the relationship between polarization and conflict onset is robust even under minority domination if one holds ethnic salience fixed. That said, the effect of minority domination on the incidence of conflict is greatest precisely when the minority is small (relative to the majority), when polarization is low, and when ethnic salience is permitted to vary.

Turning to the other measures of conflict, we find that the number of conflict episodes increases with the size of the minority in power and is greater when ethnic salience is permitted to vary. An exception occurs when $RQ = 0.99$, from which point on, the number of episodes under fixed salience exceeds that under variable salience. Conflict duration displays a trend similar to that reported in experiments A and B until $RQ = 0.89$, after which point conflict duration declines as fixed and variable ethnic salience become equivalent ($RQ = 0.99$) and then increases moderately when the rivals groups are equally sized ($RQ = 1.00$).

Experiment D: Ethnic polarization, ethnic salience, and economic policy. In our final experiment, we analyze the effect of a change in economic policy on conflict at different levels of polarization, under both fixed and variable measures of ethnic salience. Our findings are summarized in Table 7.
To begin with, we note that in all the cases examined in this experiment, total revenue is higher when ethnic salience varies, suggesting that the assumption of fixed ethnic salience effectively amplifies the negative (positive) effect of polarization on economic performance (conflict onset). Yet, even this effect is open to question.

At the minimal level of polarization ($RQ = 0.51$), benevolent rule—a fiscally prudent strategy by which spending and investment are diversified across the economy without neglecting the military—generates no conflict (as expected) and yields high revenue, accrued exclusively by the EGIP’s leadership A. In contrast, our default and fiscally imprudent strategy, robbery, generates conflict (also as expected), with the lion’s share of revenue still going to A and a proportional (relative to group size) share of revenue going to B.

At the maximal level of ethnic polarization ($RQ = 1$), A’s total revenue increases under benevolent rule (the rival ethnic group B is larger, poorer, and more of its members consequently seek to benefit economically under A), whereas A’s total revenue decreases under robbery with a greater share going to B.

These findings suggest that the success or failure of economic policy generates conflict over revenue sharing and that economic policy may succeed or fail regardless of the level of ethnic polarization.

Conclusion

Do levels of ethnic polarization effectively explain the incidence of civil conflict? Our response to this question is a qualified “yes,” given that our findings point to ethnic salience as a key moderating variable in the polarization–conflict
relationship. Using an agent-based computational model, we examine how the effect of ethnic polarization on the incidence of civil war could be moderated by different degrees of ethnic salience.

First, we find that when ethnicity is “fixed,” or assumed to be salient for all individuals across rival groups, conflict onset is more than twice as high at the lowest level of ethnic polarization ($RQ = 0.51$), with the difference decreasing as polarization reaches its highest or maximal level ($RQ = 1.00$). And while the disparity in conflict onset under fixed and variable ethnic salience holds across intermediate levels of polarization ($RQ = 0.75, 0.89, 0.99$), we find little support for a nonmonotonic relationship between ethnic polarization and conflict onset, in contrast to findings presented by Esteban and Ray (2008). Turning to the number of conflict episodes, we find a similar trend, albeit with the difference under fixed and variable ethnic salience remaining stable. Conflict duration, in contrast, is higher under variable ethnic salience at low and intermediate levels of polarization ($RQ = 0.51$ to 0.89), with the result inverted at high levels of polarization ($RQ = 0.99$ to 1.00).

Second, we find the relationship between conflict onset and the per-capita range over which variable ethnic salience is calculated to be positive and robust until $RQ = 0.89$, beyond which the relationship is contingent on the existence and distribution of localized ethnic enclaves on the model’s landscape. Our findings also indicate that minority domination could influence the incidence of conflict and that the effect is sensitive to the specification of ethnic salience: when ethnic salience is fixed, conflict onset increases with the level of polarization or size of the minority in power, peaking when the groups are close but not yet equal in size ($RQ = 0.99$); when ethnic salience is permitted to vary, however, conflict onset decreases as the level of polarization rises. This finding effectively suggests that the relationship between polarization and conflict onset could be robust even under minority

Table 7

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Policy</th>
<th>Ethnic Salience</th>
<th>Revenue \hat{A} (SD)</th>
<th>Revenue \hat{B} (SD)</th>
<th>Conflict Onset (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RQ = 0.51$</td>
<td>Benevolent</td>
<td>Fixed</td>
<td>943.88 (0.00)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Benevolent</td>
<td>Variable</td>
<td>995.26 (0.00)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$RQ = 0.51$</td>
<td>Robbery</td>
<td>Fixed</td>
<td>854.79 (29.41)</td>
<td>139.56 (9.21)</td>
<td>0.14 (0.01)</td>
</tr>
<tr>
<td></td>
<td>Robbery</td>
<td>Variable</td>
<td>925.71 (40.78)</td>
<td>139.78 (10.29)</td>
<td>0.050 (0.01)</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Benevolent</td>
<td>Fixed</td>
<td>1,006.52 (0.00)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Benevolent</td>
<td>Variable</td>
<td>1,056.47 (0.00)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$RQ = 1.00$</td>
<td>Robbery</td>
<td>Fixed</td>
<td>419.60 (129.98)</td>
<td>522.08 (117.22)</td>
<td>0.35 (0.05)</td>
</tr>
<tr>
<td></td>
<td>Robbery</td>
<td>Variable</td>
<td>504.28 (174.69)</td>
<td>532.66 (118.12)</td>
<td>0.21 (0.02)</td>
</tr>
</tbody>
</table>

Note: $RQ =$ Reynal-Querol index.
domination, if and only if one holds ethnic salience constant. In addition, we find that the number of conflict episodes is likely to be greater under variable ethnic salience when minorities hold power, although this effect diminishes in magnitude and is then reversed as the rival groups approach parity.

Finally, our last experiment indicates that increasing polarization to its maximal level has a negative effect on economic performance under specific economic policies (i.e., robbery), with the effect amplified by the assumption of fixed ethnic salience. Given empirical evidence supporting the finding that a maximal level of polarization is negatively correlated with lower growth rates (Easterly and Levine 1997) and lower levels of participation in groups and associations (Alesina and La Ferrara 2000), it may be reasonable to posit that robbery (or other strategies that effectively generate this negative correlation) are more likely to be observed in the real world. That said, we find that under other economic policies (i.e., benevolent rule), increasing polarization to its maximal level has a positive effect on economic performance, which leads us to conclude that while economic policy may succeed or fail regardless of the level of ethnic polarization, it is policy failure that generates conflict over revenue sharing. Thus, in contrast to the assertion that ethnic polarization has an indirect negative effect on growth because of the increased conflict risk and concomitant reduction in investment (Montalvo and Reynal-Querol 2005b), the causal arrow could run directly from economic policy to performance and conflict, with resulting conflict levels then moderated by ethnic polarization.

Our theoretical analysis has a significant, if relatively straightforward, implication for research on ethnicity and civil war: if indeed the importance individuals attach to their ethnic identities is a key determinant of conflict, then shifts in ethnic salience should assume center stage in explanations that link ethnicity to conflict. We therefore close with a call for scholars to find new and novel ways to bridge the gap between individual-level data on ethnic salience and aggregate data on conflict onset, episodes, and duration. Recent work by Raleigh and Hegre (2005), Buhaug and Rød (2006), Cederman, Rød, and Weidmann (2006), Dorussen (2007), and Weidmann (2007) that disaggregates civil conflict to the subnational level constitutes a promising start in this direction.

Notes

1. See Bratton, Mattes, and Gyimah-Boadi (2004) for details about the Afrobarometer project.
2. Other identity categories for this question include religion, occupation/class, and gender. See Eifert, Miguel, and Posner (2007) for a detailed discussion of the limitations associated with the use of this question to measure ethnic salience, including but not limited to issues related to the context specificity of respondent answers, idiosyncratic situational factors, the bias associated with self-reported identities, the fact that the survey question explicitly bars respondents from describing themselves primarily in terms of their national identity, and the generalizability of the sample to the broader African context. Note also that the question we use was dropped from round 3 of the survey.
3. Nigeria and South Africa were not alone in this respect, with ethnic salience varying from lows of 11.1 percent to highs of 68.4 percent across eight regions including the capital district in Mali, from 12.5 percent to 84.4 percent across fifteen districts in Malawi, and from 26.2 percent to 77.1 percent across ten provinces in Zimbabwe.

4. Our analysis raises the question of whether an individual-level approach is useful for explaining group behavior. Our response is emphatically affirmative: (1) groups are not monolithic in their propensity to engage in violence against nominal rivals; (2) groups are composed of heterogeneous individuals who vary in their antipathy toward rivals as well as in their willingness to bear the (high and often prohibitive) costs associated with violent behavior; and (3) group membership need not, therefore, determine the strength of individual attachment to ethnicity. That said, groups remain important in determining power relations, which in turn shape individual behavior. As a result, our framework captures both group (ethnic domination and polarization) and individual-level (ethnic salience) attributes associated with ethnicity.

5. In our framework, all agents carry an ethnic marker identifying them as members of an ethnic group, A or B. Ethnic salience denotes the significance of ethnic group membership to a peasant, and may either be “fixed” at a high and constant level (ε_A = ε_B = 1) for all peasants or “vary” across peasants (ε_A, ε_B ∈ [0, 1]). In the latter case, we specify ethnic salience as a function of relative revenue: the greater the disparity between a peasant’s income and the per capita income of nominal rivals, the greater the salience he or she attaches to his or her ethnicity. The calculation of ethnic salience is specified more fully in the Web-based appendix to this paper.

6. The ELF measures the likelihood that two people chosen at random will not belong to the same ethnic group. Compiled by a team of Soviet ethnographers in the early 1960s, the ELF is calculated using the Herfindahl concentration formula, \(ELF = 1 - \sum_{i=1}^{n} s_i^2 \), where \(s_i \) is the share if group \(i (i = 1, \ldots, n) \).

7. More recently, Campos and Kuzeyev (2007) use census data from twenty-six former communist countries undergoing transitions to introduce time-sensitive fractionalization indices in an effort to endogenize the relationship between ethnic heterogeneity and growth (Alesina and La Ferrara 2000; Posner 2005). They find that when treated exogenously, ethnic fractionalization has little or no impact on economic growth. Treated endogenously, however, fractionalization is negatively related to growth, and the finding is robust to the use of different specifications of ethnic fractionalization and polarization.

8. Schneider and Wiesehomeier (2006) take exception to findings that support the polarization–conflict link, arguing instead that highly polarized countries are no more likely to experience civil war than countries characterized by low levels of ethnic polarization and suggesting that fractionalization, not polarization, is negatively associated with economic growth. Their argument centers on the coding and classification of conflict, highlighting the distinction between conflict incidence and conflict onset.

9. For example, Esteban and Ray (2008) use a measure of polarization, \(P(\sigma, b) = \sum_i \sum_{j=1}^{n_i} n_i^{1+\sigma} b_{ij} \), where \(b \) is the matrix of intergroup distances or alienation with respect to other groups and \(\sigma \) captures the extent of intergroup identification or group size. They reduce this equation to \(P = \sum_i n_i^\sigma(1 - n_i) \), or the RQ index of polarization, based on the assumptions that individuals in each group feel equally alien toward all groups but their own: \((b_{ij} = b_j \forall i \neq j) \), \(\sigma = 1 \), and \(b_i = 1 \).

10. Posner acknowledges that this criticism is equally applicable to the PREG index, which he introduces as an alternative to the ELF, noting that the PREG index takes no explicit account of either the degree of concentration of the ethnic groups in the country or the depth of the divisions among them (2004, 855).

11. See Lim, Metzler, and Bar-Yam (LMB) for a recent analysis that uses ABMs to study ethnic violence. Despite some general similarities between the LMB and our own framework (landscape composed of grid cells, agents who migrate, ethnic or civil violence as an explanatory variable), the most notable departure lies in the LMB assumption that violence arises because of the structure of boundaries between ethnic groups rather than because of inherent conflicts between groups themselves—that the spatial population structure, as opposed to measures of ethnic diversity such as fragmentation, increases the
propensity for violence. Underlying this assumption is the notion that spatial heterogeneity itself serves as a predictor of violence and that modeling violence at the individual level is both unnecessary and impractical.

12. For a complete description of our framework, titled REsCape, see Bhavnani, Miodownik, and Nart (2008).

13. In contrast to Lim, Metzler, and Bar-Yam’s (2007) assumption that both highly mixed regions and well-segregated regions do not engage in violence, our framework permits us to analyze the conditions under which nominal ethnic rivals form ethnic enclaves and whether the resulting ethnic segregation prevents violence.

14. See Bhavnani, Nart, and Riolo (2008) for work that analyzes the effect of changes in resource regimes and strategy on the incidence of civil conflict.

15. Cederman and Girardin (2007) introduce the N^* index in an effort to capture power relations between the government or EGIP and peripheral EGOPs.

References

Schneider, Gerald, and Nina Wiesehomeier. 2006. Ethnic polarization, potential conflict, and civil wars: Comment. Unpublished manuscript, University of Konstanz.

